I am no expert on energy and the environment, having spent the latter half of my career in information systems engineering; especially security, safety and automation. However, I have also worked as a trouble shooting systems generalist and it is this experience that I want to try to bring to the energy challenge in tackling climate change.
|
Grangemouth refinery |
The government is committing to “Net Zero” greenhouse gas (GHG) emissions by 2050. This is good news but the means of achieving it are critical. To tackle climate change innovation is still urgently needed and it must come quickly because implementation time scales for new technology in complex systems are so slow. Often implementation to operation requires more than a decade to get on-line, as can be seen from the proposed
Small Modular Reactor power plant that will not see operation before 2030. However, even at this stage, given that the best scientific opinion has been clear on climate change for decades, there is still no consensus on the mix of energy solutions required and priorities. There is a continuing environmental movement opposition in principle to nuclear energy, despite its zero GHG emissions when in operation. Ensuring that the identified priorities are the right ones means recognising those environmental and societal factors that contribute to global warming and disentangling them from the real but different concerns on air quality and pollution of oceans and waterways. The concerns about species extinction would also benefit from the clarity afforded by distinguishing between what is and what is not a due to GHG emissions.
We need to unblock the system to act with urgency but remain focused on a plan. All this requires an increase in tempo. Suggestions on how to do this have been provided in a report prepared for the Aldersgate Group:
Accelerating innovation towards net zero emissions. They identify six (not five) key actions for government policy to accelerate low carbon innovation in the UK :
- Increase ambition in demonstrating complex and high capital cost technologies
- Create new markets to catalyse early deployment and move towards widespread commercialisation
- Use concurrent innovations, such as digital technologies, to improve system efficiency and make new products more accessible and attractive to customers.
- Use existing or new institutions to accelerate critical innovation areas and co-ordinate early stage deployment.
- Harness trusted voices to build consumer acceptance.
- Align innovation policy in such a way that it strengthens the UK’s industrial advantages and increases knowledge spill overs between businesses and sectors
The report says that implementing these lessons will require a further increase in government support for innovation – through both research, development and demonstration and through deployment policies to create new markets. Government doe snot have good record in implementing complex infrastructure projects. As well as policies to create new markets, regulation and market correction should be implemented to channel the the infrastructure and engineering capabilities of the the oil and gas, as well as the defence and petro-chemical industries. As has been argued persuasively by the Nobel Prize winning economist
William Nordhaus, many problems should be solved by robust carbon pricing, preferably through a carbon tax. This will release current market potential and create new market opportunities as well as generating funding for innovation.
If cost was no obstacle, land and material resources available, then current renewable energy technologies and storage methods would be sufficient. But this is not the case; there are trade-offs with costs and benefits of any course of action need to be weighed. There are many challenges and perhaps the greatest are political in both needing to convince the populations of almost all countries in the world to sacrifice their current quality of life to mitigate a predicted greater cost but one that will impact grand children and finding ways to ensure that the free loader effect does no disrupt the good intentions achieved through the Paris protocol. However if this political challenges are achieved further innovation will still be required and if the political challenges are not addressed or only partially then innovation become the only hope. However, the International Energy Agency (IEA) identifies a bottleneck in innovation.
The investment in R&D for low carbon technology is not growing. IEA are tracking key technologies and of a set of 39 only 7 are on track to meet Paris targets, 20 need remedial action and 13 are off track. Those that are on track are:
solar photovoltaics (PV), bioenergy for power, energy storage, electric vehicles (EVs), rail, lighting and data centres. It must be emphasised that these are on track, not complete, further investment and maintained efforts are required. To concentrate on the power domain the following technologies are tracked by the IEA:
Now, not all are equally critical but there are systemic dependencies so that the full benefit of net-zero carbon energy generation can be delivered through efficient power transmission with capacity for storage. Obviously the problem with coal fired power is that we are still using too much of it and this can only be solved by replacement technologies. For wind the key problem is not primarily technical, although there are improvements to be made, but regulation, planning and consultation. In those areas that are difficult to de-carbonise there will need to be compensating carbon capture technology. In nuclear technical work to increase modularisation and scalability is required as well safety and security by design. The major objections to nuclear of waste, safety, security and cost are being addressed but efforts must continue.
We need a short to medium term boost in funding to achieve the needed acceleration. This could be provided as a dividend from imposing a carbon tax or other robust form of carbon pricing. As well as providing revenue for R&D it also provides a steering mechanism because the tax will help correct for the failure of the energy market and provide path to exploitation for the innovations. Speed of exploitation remains a challenge with a quagmire of regulations, permissions and consultations to wade through in addition to the technical challenges that are always present in scaling up form proof of concept to operational system. Eventually an emergency situation will require emergency powers but climate change is a slow motion emergency both in the climatic development in response to increased green house gas concentration and in the climates response to mitigation. In the end it will come down to whether there is the social and political will to carry through an emergency response.